ORGANOALUMINIUM REAGENTS INDUCED ISOMERIZATION

OF 5-HYDROXY-3,3,6-TRIMETHYL-5-HEPTENOIC ACID δ-LACTONE

TO 2,2,5,5-TETRAMETHYL-1,3-CYCLOHEXANEDIONE

Hiroki Tomioka, Koichiro Oshima,* and Hitosi Nozaki
Department of Industrial Chemistry, Faculty of Engineering,
Kyoto University, Yoshida, Kyoto 606, Japan

Abstract: Treatment of the title lactone and the related δ or $\epsilon\text{-lactones}$ with EtzAlSR (R = Et or Ph) gave 1,3-cyclohexanediones or 1,3-cycloheptanediones in excellent yields.

Organoaluminium compounds are attractive reagents for aldol type condensation. Although methods are available for converting a carbonyl compound into a reactive aluminium enolate, there still exists a need for new methods effecting complicated synthesis. Here we describe a new process for the transformation of an olefinic lactone into a 1,3-diketone via a probable intermediate, the aluminium enolate II.

A solution of PhSH (0.24 g, 2.2 mmol) in hexane (10 ml) was added to a solution of trimethylaluminium in hexane (1.0M, 2.2 ml, 2.2 mmol) at 0°C under argon atmosphere. After stirring for 30 min at 0°C, the solvent was removed in vacuo to leave a white solid Me₂AlSPh. A solution of δ -lactone I (0.34 g, 2.0 mmol) in tetrahydrofuran (15 ml) was added and the resulting mixture was heated at reflux for 1 h. Dilution with ether (20 ml), acidic workup, and final purification by silica gel column chromatography gave the 1,3-diketone III (0.31 g, 91% yield).

Dimethylaluminium ethanethiolate and Me₂AlSeMe were also effective for the transformation (yield of \mathbbm{m} , 97% and 89%, respectively). Magnesium benzenethiolate (IMgSPh) and LiSPh were less effective as far as the yields of \mathbbm{m} are concerned (72% and 27%).

Lactones IV in Table 1 were prepared by the previously reported photo-reaction 5 and the combination of this new method and photo process

Table 1. Isomerization of 5-hydroxy-5-heptenoic acid δ-lactone derivatives^a

Run	Substrate R2		Reaction	Yield of
	R ⁺	R ²	Time (h)	1,3-Diketone(%)
1	Me	Me	1	91
-	110	110	•	91
2	H	-(CH ₂) ₄ -	0.5	83
3	Me	-(CH ₂) ₄ -	1	85
4	Me	-(CH ₂) ₄ - -(CH ₂) ₅ -	1	93

aReactions were performed on 2.0 mmol scale in THF at 80°C.

accomplished the cycle $V \longrightarrow IV \longrightarrow V$. Simple synthetic application of the new method to 1,3-cycloheptanedione from pulegone is shown below.⁸

References and Notes

- (a) A. Itoh, S. Ozawa, K. Oshima, and H. Nozaki, Bull. Chem. Soc. Jpn., 54, 274 (1981) and references cited therein. (b) J. Tsuji, T. Yamada, M. Kaito, and T. Mandai, Tetrahedron Lett., 1979, 2257.
- 2. N. Davidson and H. C. Brown, J. Am. Chem. Soc., 64, 316 (1942).
- 3. Tetrahydrofuran was found to be the best solvent for the aldol type reaction of aluminium enolates. See ref. 1.
- 4. Unidentified polar by-products were formed in the case of LiSPh.
- 5. H. Nozaki, Z. Yamaguti, and R. Noyori, Tetrahedron Lett., 1965, 37.
- J. L. Marshall, J. P. Brooks, and G. W. Hatzenbuehler, Ⅲ, J. Org. Chem., 34, 4193 (1969).
- 7. Mp. 53-55°C; IR (CCl₄) 1700, 1460, 1380, 1108 cm⁻¹; NMR (CDCl₃) δ 1.23 (s, 6H), 1.00 (d, 3H, J = 6.3 Hz). W. Reusch, D. F. Anderson, and C. K. Johnson, J. Am. Chem. Soc., 90, 4988 (1968).
- 8. Financial support by the Ministry of Education, Science, and Culture, Japanese Government (Grant-in-Aid #56430027), is acknowledged.

(Received in Japan 19 September 1981)